
A PRIORI AND A POSTERIORI KNOWLEDGE

IN EPISTEMIC LOGIC

Abstract. We study the dichotomy of a priori and a posteriori in the
multi-agent epistemic logic S5. A formula ϕ is said to be a posteriori
discernable by an individual i if in some possible world i does not know
weather ϕ. A formula is said to be a priori discernable by i if in all
possible worlds i knows whether ϕ. We show that the formulas that are
a priori discernable by i are theorems, contradictions, and formulas that
are logically equivalent to a description of i’s knowledge. The formulas
known by i in a given possible world is split into two parts: The formulas
that i a priori knows — i.e., the a priori discernable formulas by i that i
knows in this possible world, and the formulas that i a posteriori knows
— i.e., the a posteriori discernable formulas by i that i knows in this
possible world, We characterize these two types of knowledge and show
that a posteriori knowledge can be retrieved from a priori knowledge
and vice versa.

1. Introduction

The distinction between a priori and a posteriori knowledge goes back to
antiquity and played an important role later in Immanuel Kant’s Critique
of Pure Reason. Roughly speaking, a priori knowledge is logically necessary
and it is obtained by reasoning and deduction without any experience and
observation. The knowledge of tautologies and more generally of mathemat-
ics is considered by most students of epistemology as a priori knowledge. In
contrast, a posteriori knowledge concerns facts that are logically contingent,
and can be acquired only by experiencing the world and observing it.

A priori and a posteriori discernability. We first note that the notions
of a priori and a posteriori can be applied to statements rather than the
knowledge of statements. A simple example demonstrates this. So far we do
not know whether there is life on Mars. If we know in the future that there
is life on Mars, or if we know that there is not, this knowledge will obviously
be a posteriori knowledge. But even before we know one or the other, the
pair of statements that there is life on Mars and that there is not, are of the
type of statements that require observation and experiment to be known.
We refer to this kind of statements as a posteriori discernable. Discernabil-
ity, as opposed to knowledge, involves two statements, a statement and its
negation, and it is about knowing whether rather than knowing that.1

Date: April 22, 2024.
1The operator “knowing whether” and its properties were studied in Hart, Heifetz and

Samet (1996).
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We study the notions of a priori and a posteriori in a propositional multi-
agent epistemic logic. Formulas in this logic are generated by atomic for-
mulas, logical connectives and for each individual i in a set I of individ-
uals a knowledge operator Ki. Thus, if ϕ is a formula in the language,
then Kiϕ is the formula that says that i knows ϕ. We assume that the
knowledge operators satisfy the axioms of the propositional modal logic
S5. In particular knowledge of each individual i satisfies for each for-
mula ϕ the truth axiom Kiϕ → ϕ and the two axioms Kiϕ → KiKiϕ,
and ¬Kiϕ → Ki¬Kiϕ. By the truth axiom we infer from these axioms
Kiϕ↔ KiKiϕ, and ¬Kiϕ↔ Ki¬Kiϕ.

The first difficulty we face in formalizing the dichotomy of a priori/a
posteriori in such a simple logic is the lack of any notion of observability
or experience in this logic. However, the semantics of the logic is built on
the notion of possible worlds that can serve as a surrogate to the missing
notion of observability. In the example above we noticed that we do not
know whether there is life on Mars or not. This is so, because not enough
observations have been made to answer the question. The lack of observation
is demonstrated by the fact that there is a possible world, in fact the one
we live in, in which we do not know whether or not there is life on Mars.
Conversely, the existence of a possible world in which one cannot tell whether
there is life on Mars shows that something is required for knowing that. We
can call this missing something, an “observation” of the world.

This leads us to the following definition of a posteriori discernability.

A formula ϕ is a posteriori discernable by an individual i if
in some possible world i does not know whether ϕ. That is,
¬Kiϕ ∧ ¬Ki¬ϕ holds true in some possible world.

By the completeness theorem for this logic, we can equivalently define a
posteriori discernability in terms of provability. The formula ϕ is a posteriori
discernable by individual i if the formula ¬Kiϕ∧¬Ki¬ϕ, is consistent, that
is, its negation that says that i knows whether ϕ, Kiϕ ∨ Ki¬ϕ, is not a
theorem.

A formula is a priori discernable if it is not a posteriori discernable,
namely,

A formula ϕ is a priori discernable by an individual i if in
all possible worlds i knows whether ϕ. That is, Kiϕ∨Ki¬ϕ
holds true in all possible worlds.

Again, a priori discernability can be defined equivalently by provability: the
formula ϕ is a priori discernable if Kiϕ ∨Ki¬ϕ is a theorem of the logic.

A priori and a posteriori knowledge. For each individual, the set of all
formulas is partitioned into two parts: a priori and a posteriori discernable
formulas. This partition is independent of the possible world. The actual
knowledge of an individual depends of course on the possible world. Thus,
for example, an individual may know ϕ in one possible world, ¬ϕ in another
possible world and know neither ϕ nor ¬ϕ in yet another possible world.
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We refer to the set of formulas that are known by an individual i in a given
possible world as i’s ken in this world.2 We characterize sets of formulas
that can be the ken of an individual in some possible world.

The partition of all formulas into a priori and a posteriori formulas dis-
cernable by i induces a partition of each ken of i into formulas that i knows
and are a priori discernable by i and formulas that i knows and are a poste-
riori discernable by i. We can now define a priori and a posteriori knowledge
in each possible world.

For ϕ in the ken of i in a given possible world ω, we say
that i knows a priori ϕ at ω if ϕ is a priori discernable by i,
and say that i knows a posteriori ϕ at ω if ϕ is a posteriori
discernable by i.

Examples.

(1) An atomic formula p is clearly a posteriori discernable by any indi-
vidual i since there is a possible world in which ¬Kip∧¬ Ki¬p holds
true. That is, in this world i knows neither p nor ¬p.

(2) It can also easily be shown that Kjp, for individual j 6= i, is a
posteriori discernable by i as there is a possible world in which
¬KiKjp ∧ ¬Ki¬Kjp holds. This reflects the fact that i cannot gain
knowledge of Kjp by contemplation alone. But observing j’s obser-
vation of p is a good experimental reason for i to know Kjp.

(3) If ϕ is a theorem of the logic, then by the generalization inference
rule in our logic Kiϕ is a theorem, and in particular Kiϕ ∨ Ki¬ϕ
is a theorem, and hence ϕ is a priori discernable by i, as one may
expect.

(4) The less trivial example of a priori discernability by i is the formula
Kiϕ. Obviously, in each possible world either Kiϕ holds or ¬Kiϕ
holds. If Kiϕ holds true it follows from the axiom Kiϕ → KiKiϕ
that KiKiϕ holds true. If ¬Kiϕ holds true it follows from the axiom
¬Kiϕ → Ki¬Kiϕ that Ki¬Kiϕ holds true. Thus, in each possible
world KiKiϕ ∨Ki¬Kiϕ holds true, which renders Kiϕ and ¬Kiϕ a
priori discernable by i. Hence, when i knows one of these formulas,
his knowledge is a priori. We discuss this example next.

Introspection? Most epistemologists consider the formula KiKiϕ a poste-
riori knowledge of i. This is so because for i to know that she knows ϕ, i has
to introspect her mental state. For example, Russell (2020) in his summary
of the state-of-the-art of the study of a priori describes the observations that
are needed to justify a posteriori knowledge:

Observations based on our senses, or introspection about our
current mental state, are needed for us to be empirically, or
a posteriori, justified in believing that some proposition is
true.

2The term was first used in this sense in Samet (1990).
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Thus, according to this view, one’s mental state is like the state of the outer
world, except that to examine it one has to look inside, that is, introspect.
In this spirit, some call the axioms Kiϕ → KiKiϕ and ¬Kiϕ → Ki¬Kiϕ
positive and negative introspection, respectively.

But here we are studying the logic S5 and in this logic knowledge does not
seem to be acquired by introspection or observation of some mental state.
If such introspection was required, then a state of affairs where one cannot
tell which of Kiϕ and ¬Kiϕ is the case would be possible, at least in the
split second before the introspection was made. However, such a state of
affairs is impossible in S5 because ¬KiKiϕ∧¬Ki¬Kiϕ is a contradiction in
S5. One does not reach the conclusion that one knows or that one does not
know ϕ as a result of time-consuming soul searching. Rather, these axioms
in our logic being theorems, or equivalently being true in all possible worlds,
define the meaning of knowledge.3 Hintikka (1962) made a similar argument
in explaining the positive introspection axiom. The same argument can be
made for the negative introspection axiom.

Characterizing a priori. Since the set of a posteriori discernable formulas
is the complement of the set of a priori discernable formulas, the character-
ization of the latter set characterizes the former set.

If either ϕ or ¬ϕ is a theorem, then by the generalization rule either
Kiϕ or Ki¬ϕ is a theorem and thus Kiϕ∨Ki¬ϕ is a theorem. Therefore all
theorems and contradictions are a priori discernable by i. Example (4) shows
that there are other formulas that are a prior discernable. We generalize this
example. We say that a formula describes i’s knowledge if it is generated by
logical connectives from formulas of the form Kiϕ.

We characterize the formulas that are a priori discernable by i as follows:

A formula is a priori discernable by i if and only if it is either
a theorem or a contradiction, or it is logically equivalent to
a formula that describes i’s knowledge.

Each ken of i is partitioned into the set of formulas that i knows a priori
and the set of formulas that i knows a posteriori. We characterize the two
parts of kens. This characterization results in full determinacy of each part
by the other part.

The a priori knowledge part of a ken of i determines its a
posteriori knowledge part, and vice versa, the a posteriori
knowledge part of a ken of i determines its a priori knowledge
part.

Discussion. Possible worlds play an important role in this paper. First,
they are used to define a priori and a posteriori discernability, and second,

3Russell (2020) considers the sentence “If you know something, you believe it and it’s
true” a priori knowledge. One does not need to examine her mind to see that she believes
when she knows. It follows from the definitions of belief and knowledge. Similarly the
axioms of knowledge in S5 define knowledge rather than describing a psychological process.
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they define the kens of an individual, which vary with possible worlds. In
the context of the a priori, possible worlds were first introduced in Kripke
(1980, pp. 35-39). Kripke distinguishes between a priori and necessary. The
first, he claims, is an epistemic notion, and the second, a metaphysical one
that has nothing to do with knowledge. Nevertheless, he admits that the
two notions are close and perhaps even identical, but says that such a claim
requires a proof. Kripke sketches the relation between the a priori and the
necessary but raises doubts as to how well this explains the relation.

... if something not only happens to be true in the actual
world but is also true in all possible worlds, then, of course,
just by running through all the possible worlds in our heads,
we ought to be able with enough effort to see, if a statement
is necessary, that it is necessary, and thus know it a priori.
But really this is not so obviously feasible at all (Kripke,
1980, p. 38).

Possible worlds in this paragraph play a role in defining the modalities of
possibility and necessity. Epistemology is manifested in Kripke’s analysis by
thinking about the non-epistemic possible worlds but it is not a modality.

Possible worlds also paly an important role in our analysis. However,
unlike Kripke, we consider knowledge as a modality. The semantics of the
modality ‘knowledge’ is defined in terms of possible worlds, but the logic is
purely epistemic and the modality of necessity plays no role. In the epistemic
logic we distinguish between a priori and a posteriori discernability, which is
a property of statements, and a priori a posteriori knowledge, which varies
with possible worlds and is not fixed like in Kripke’s analysis.

Kripke’s concern about the feasibility of thinking of all possible worlds is
justified as there is a continuum of possible worlds.4 However, this concern
is lessened by the fact that a formula is true in all possible worlds if and
only if it is true in each of the finitely many possible worlds in some specific
model.5 Indeed, this fact is proved here where the finite model is the n-
canonical model with n being the depth of the formula.

The logic of the knowledge operators studied here, known as the modal
logic S5, raised some objection by Hintikka (1962), who considered the com-
bination of the axioms of truth and negative introspection to be incoherent.
However, Stalnaker (2006) who agreed with Hintikka’s criticism, observed
that students of interaction, like game theorists and computer scientists, use
S5 almost exclusively. The reason for studying this logic here is its preva-
lence and simplicity. The results obtained here are not trivially extended to
other logics of knowledge and belief. Other logics may require a modification
of the definitions of a posteriori and a priori knowledge, and the properties
of these types of knowledge will surely vary with the different logics.

4See, Hart, Heifetz and Samet (1996) and Aumann (1999).
5This is Theorem 3.2.2 in Fagin, Halpern, Moses and Vardi (1995).
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2. Preliminaries

2.1. Syntax. We consider a logic of multi-agent knowledge for a finite set I
of individuals.6 Starting with a set A of atomic formulas, the set of formulas,
F is the smallest set that contains A and for each ϕ and ψ in F , contains
¬ϕ (read, not ϕ), (ϕ→ ψ) (read, if ϕ then ψ), and Kiϕ (read, i knows ϕ).
The logical connectives ∧, ∨ and ↔ are defined as usual in terms of ¬ and
→.

The set of theorems in F is defined inductively starting with a set of
sentences called axioms. The set of axioms consists of all propositional cal-
culus tautologies and for each i and sentences ϕ and ψ, each of the following
sentences:

(K) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ);
(T) Kiϕ→ ϕ (truth axiom);
(5) ¬Kiϕ→ Ki¬Kiϕ (negative introspection).

The set of theorems T is the smallest set of formulas that contains all the
axioms, and for each ϕ ∈ T , if ϕ→ ψ ∈ T then ψ ∈ T (modus ponens), and
for each i, Kiϕ ∈ T (generalization). For a theorem ϕ we write ` ϕ. Two
useful theorems are Kiϕ→ KiKiϕ (positive introspection) and Ki(ϕ∧ψ)↔
(Kiϕ∧Kiψ). A negation of a theorem is called a contradiction. A sentence
that is not a contradiction is consistent. A formula is inconsistent when it
is not consistent, that is, it is a contradiction. When ` ϕ ↔ ψ we say that
ϕ and ψ are logically equivalent, or equivalent for short, and write ϕ ≡ ψ.
If we replace a subformula of ϕ with an equivalent formula, the resulting
formula is equivalent to ϕ. A set of formulas Φ is consistent if there are no
formulas ϕ1, . . . , ϕn in Φ such that (ϕ1 ∧ · · · ∧ ϕn) is inconsistent.

2.2. Models. We use Kripke models, models for short, as the semantics of
the logic. A model consists of a set Ω of possible worlds; an equivalence
relation on Ω, ∼i for each individual i; and interpretation of each atomic
formula p, which is a subset of Ω denoted by [p]. We denote by Πi the
partition of Ω into equivalence classes of ∼i, and by Πi(ω) the equivalence
class containing ω.

The interpretation of all formulas is defined by induction on the structure
of formulas; [¬ϕ] = Ω\[ϕ]; [ϕ∧ψ] = [ϕ]∩[ψ]; and [Kiϕ] = {ω | Πi(ω) ⊆ [ϕ]}.
We say that ϕ is true in ω if ω ∈ [ϕ]. It is easy to show that the logic is
sound for the family of Kripke models, that is, each theorem is true in each
possible world of each model. In other words, if ϕ is a theorem then in each
model Ω, [ϕ] = Ω.

2.3. The canonical model. Lindenbaum’s Lemma claims that if Φ is a
consistent set of formulas such that ϕ /∈ Φ and ¬ϕ /∈ Φ, then at least one of
Φ∪{ϕ} and Φ∪{¬ϕ} is consistent. A maximal consistent set is a consistent
set of formulas Φ such that each proper superset of Φ is inconsistent. By

6This logic is described in detail in Fagin, Halpern, Moses and Vardi (1995)
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Lindenbaum’s Lemma, Φ is maximal consistent if and only if it is consistent
and for each formula ϕ, exactly one of ϕ and ¬ϕ is in Φ. Moreover, by this
lemma, every consistent set Ψ is a subset of some maximal consistent set.
Since a formula ϕ is a theorem if and only if ¬ϕ is inconsistent, it follows
that ϕ is a theorem if and only if it is contained in each maximal consistent
set.

Let Ω∞ be the set of all maximal consistent sets. We make Ω∞ a model,
which we call the canonical model by defining for each atomic formula p,
[p] = {ω | p ∈ ω}, and for each ω and ω′ in Ω∞ and i, ω ∼i ω

′ whenever for
each formula ϕ, Kiϕ ∈ ω if and only if Kiϕ ∈ ω′. The special feature of the
canonical model is the following property that is proved by induction of the
structure of formulas: For each formula ϕ,

(1) [ϕ] = {ω ∈ Ω∞ | ϕ ∈ ω}.
Note that if ϕ is true in every possible world in each model, then in

particular, for the canonical model [ϕ] = Ω∞. Thus, by equation (1), ϕ ∈ ω
for each ω ∈ Ω∞, which implies, as we argued before, that ϕ is a theorem.
This proves that the logic is complete for the canonical model and a fortiori
for the family of Kripke models.7

2.4. n-canonical models. The depth of a formula ϕ, denoted dep(ϕ), mea-
sures the number of nested knowledge operators in ϕ. Formally, dep is de-
fied by induction of the structure of formulas. For each atomic formula p,
dep(p) = 0, dep(¬ϕ) = dep(ϕ), dep(ϕ ∧ ψ) = max(dep(ϕ), dep(ψ)), and for
each individual i, dep(Kiϕ) = dep(ϕ) + 1.

An n-maximal consistent set is a consistent set of formulas of depth ≤ n,
Φ, such that each proper superset of Φ that consists of formulas of depth ≤ n
is inconsistent. Equivalently, a set Φ of formulas of depth ≤ n is n-maximal
consistent if it is consistent and for each ϕ with dep(p) ≤ n exactly one of ϕ
and ¬ϕ is in Φ. The set of all n-maximal consistent sets is denoted by Ωn.
We make Ωn a model, which we call the n-canonical model, by defining [p]
and ∼i exactly as they are defined for Ω∞. Similarly to (1) and with the
same proof we can show that for each formula ϕ with dep(ϕ) ≤ n,

(2) [ϕ] = {ω ∈ Ωn | ϕ ∈ ω}.
The relation between Ω∞ and Ωn is simple.

Claim 1. For every n ≥ 1, each ω ∈ Ωn is contained in some ω′ ∈ Ω∞

(indeed in many such worlds), and each ω′ ∈ Ω∞ contains exactly one world
ω ∈ Ωn.

The first part follows from Lindenbaum’s Lemma and the second from ω′

being a maximal consistent set. Since a formula ϕ is a theorem if and only
if ϕ ∈ ω for each ω ∈ Ω∞ it follows by Claim 1 that

7This is how the completeness theorem for this logic is proved in Fagin, Halpern, Moses
and Vardi (1995) (see theorem Theorem 3.1.3 there).
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Claim 2. A formula ϕ with dep(ϕ) ≤ n is a theorem if and only if ϕ ∈ ω
for each ω ∈ Ωn.

Finally, in the n-canonical model, for each i, each equivalence class of ∼i

can be expressed by a formula of degree ≤ n that describes i’s knowledge in
the possible worlds of the equivalence class.

Claim 3. For ω ∈ Ωn with n ≥ 1 and individual i, let

ϕi
ω = (∧Kiϕ∈ωKiϕ)

∧
(∧¬Kiϕ∈ω¬Kiϕ).

Then, Πi(ω) = [ϕi
ω].

Indeed, by the definition of ∼i, for any ω′ ∼i ω, ϕi
ω ∈ ω′, and therefore,

by (2), Πi(ω) ⊆ [ϕi
ω]. If ω′ 6∼i ω, then ϕi

ω 6= ϕi
ω′ and moreover, they are

contradictory. Hence, ϕi
ω /∈ ω′, which establishes the equality of the claim.

The n-canonical model is very similar to the well-known canonical model.
Nevertheless, we cannot give a reference to this notion in the literature of
modal logic and knowledge. There are several works that define set theo-
retically a sequence of finite models for modal logic by taking in each step
certain supersets of the possible worlds of the previous step. The possible
worlds in this construction are called in Fagin and Vardi (1985) and Fagin,
Halpern and Vardi (1991) k-ary worlds and the limit of such worlds is called
there a modal structure. A similar construction is carried out in Heifetz
and Samet (1999). It is possible to show that the model of k-ary worlds is
isomorphic to the k-canonical model and the model of modal structures is
the canonical model. However, these works do not make this connection.

3. A priori and a posteriori discernability

For each individual i, we divide the set of all formulas into two subsets:
the set of formulas that are a posteriori discernable by individual i, and the
complement, the set of formulas that are a priori discernable by individual
i. Intuitively, a formula ϕ is a posteriori discernable by individual i if telling
which of ϕ and ¬ϕ is true requires an observation. Although observation
cannot be expressed directly in our simple language, we can think of a
possible world in which the individual cannot tell which of ϕ and ¬ϕ is true
as a world in which no observation is made. A formula is a priori discernable
by individual i if it is not a posteriori discernable by i. That is, if in all the
possible worlds i knows whether the formula or its negation holds. Note
that both a priori and a posteriori discernability are defined in terms of
knowing whether, rather than knowing that. In particular, each of the sets
of a posteriori and a priori discernable formulas is closed under negation.
Formally,

Definition 1. A formula ϕ is a posteriori discernable by individual i if
in some possible world in some model the formula (¬Kiϕ) ∧ (¬Ki¬ϕ) holds
true. Equivalently, ϕ is a posteriori discernable by individual i if (¬Kiϕ) ∧
(¬Ki¬ϕ) is consistent.



A PRIORI AND A POSTERIORI KNOWLEDGE 9

A formula ϕ is a priori discernable by individual i if in all possible worlds
of each model the formula (Kiϕ) ∨ (Ki¬ϕ) holds true . Equivalently, ϕ is a
priori discernable by individual i if (Kiϕ) ∨ (Ki¬ϕ) is a theorem.

We denote by Ri the set of formulas that are a priori discernable by i and
by Si the set of formulas that are a posteriori discernable by i. Thus,

Ri = {ϕ | ` (Kϕ) ∨ (K¬ϕ)} Si = {ϕ |6` (Kϕ) ∨ (K¬ϕ)}.
Obviously, for each atomic formula p, p and ¬p are in Si as there is a

simple model and a possible world in the model in which i knows neither p
nor ¬p. If ϕ is a theorem then Kiϕ is a theorem and therefore Kiϕ∨Ki¬ϕ
is a theorem, and thus, ϕ and ¬ϕ are in Ri. For each formula ϕ, Kiϕ and
¬Kiϕ are in Ri since (KiKiϕ) ∨ (Ki¬Kiϕ) is a theorem.

The next proposition provides us with alternative definitions of Ri in
terms of provability.

Proposition 1. The following conditions are equivalent.

(1) ` Kiϕ ∨Ki¬ϕ.
(2) ` Ki¬ϕ↔ ¬Kiϕ.
(3) ` ϕ→ Kiϕ;
(4) ` ϕ↔ Kiϕ;
(5) ` ¬ϕ→ Ki¬ϕ;
(6) ` ¬ϕ↔ Ki¬ϕ;

Proof: (1) and (2) are equivalent: By (2) ` ¬Kiϕ → Ki¬ϕ which
is (1). The other implication in (2) is obtained by the truth axiom as
` Ki¬ϕ→ ¬ϕ, and ` ¬ϕ→ ¬Kiϕ. (3) and (4) are equivalent and (5)
and (6) are equivalent: Obviously, (4) implies (3) and (6) implies (5).
The other implications in (4) and (6) are just the truth axiom. (1) and
(3) are equivalent: By the truth axiom ` ϕ → ¬Ki¬ϕ. Together with
(1) we conclude (3) by propositional calculus. For the converse, (3) implies
` ¬Kiϕ → ¬ϕ and hence by generalization ` Ki(¬Kiϕ → ¬ϕ). By axiom
K and negative introspection ` ¬Kiϕ → Ki¬ϕ, which is (1). (1) and (5)
are equivalent: The proof is similar to the equivalence of (1) and (3).

In the following theorem we show that Ri consists of two types of formulas,
trivial ones and formulas that describe i’s knowledge.

Definition 2. A formula ϕ is said to be trivial if either ` ϕ or ` ¬ϕ.

To describe i’s knowledge we consider Fi, the set of formulas generated
by the logical connectives from formulas of the form Kiϕ.

Theorem 1. A formula ϕ is in Ri if and only if either ϕ is trivial or ϕ ≡ ψ
for some ψ ∈ Fi with dep(ψ) ≤ dep(ϕ). 8

8 The ‘or’ in this theorem is not exclusive. For example Kip∨¬Kip is in Ri and Fi. It
is both trivial and it is equivalent to itself. There are trivial formulas that do not satisfy
the other condition, for example p ∨ ¬p for an atomic formula p, which is not equivalent
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Proof: Let ϕ ∈ Ri. We need to show that if ϕ is not trivial then there
exists a formula ψ in Fi with dep(ψ) ≤ dep(ϕ) such that ϕ ≡ ψ. We show
that if ϕ is not trivial and there is no such formula ψ, then ϕ 6∈ Ri, that is
ϕ ∈ Si.

Consider first the simple case where dep(ϕ) = 0. In this case, just the
fact that ϕ is not trivial implies that ϕ ∈ Si. Indeed, we can easily construct
a model and a possible world in it at which ¬Kiϕ∧¬Ki¬ϕ holds true, that
is, ϕ ∈ Si. Suppose, then, that dep(ϕ) = n > 0. We show that [ϕ] is not a
union of equivalence classes of ∼i in the n-canonical model Ωn. Indeed, for
each equivalence class of ∼i, πi, chose ω ∈ πi. Then, by Claim 3, πi = [ϕω].
Observe that ϕω ∈ Fi and dep(ϕω) ≤ n. If [ϕ] = ∪nk=1π

k
i , where each

πki is an equivalence class of ∼i, then [ϕ] = [∨nk=1ϕωk ], where for each k,

ωk ∈ πki . Thus, ϕ↔ ∨nk=1ϕωk is true in all possible worlds in Ωn. Since the
disjunction is of depth ≤ n, it follows, by Claim 2, that ϕ ≡ ∨nk=1ϕωk , which
contradicts our assumption as ∨nk=1ϕωk ∈ Fi.

Since ϕ is not trivial, we conclude, by Claim 2, that [ϕ] and [¬ϕ] = Ωn\[ϕ]
are not empty. Thus, since [ϕ] is not a union of equivalence classes of ∼i

there is an equivalence class of ∼i with non-empty intersection with [ϕ] and
with [¬ϕ]. In each possible world in this equivalence class ¬Kiϕ ∧ ¬Ki¬ϕ
holds true, and thus ϕ ∈ Si.

To show the converse, we first note that if ϕ is trivial then by the gener-
alization rule, ` Kiϕ ∨Ki¬ϕ, that is, ϕ ∈ Ri. Next we claim that Fi ⊆ Ri.
For this we use the following lemma.

Lemma 1. For each ϕ ∈ Fi, ϕ ≡ Kiϕ.

Proof: The proof is by induction on the structure of formulas in Fi The
claim is obviously true for formulas ϕ = Kiψ by the truth axiom and positive
introspection. Suppose ϕ = ¬ψ and ψ ≡ Kiψ. We need to show that
¬ψ ≡ Ki¬ψ. Indeed, per our assumption and negative introspection, ¬ψ ≡
¬Kiψ ≡ Ki¬Kiψ ≡ Ki¬ψ. Finally, suppose that ϕ = ψ ∧ ξ and Kiψ ≡ ψ
and Kiξ ≡ ξ, then Ki(ψ ∧ ξ) ≡ (Kiψ) ∧ (Kiξ) ≡ ψ ∧ ξ.

It follows from Lemma 1 and part (4) of Proposition 1 that Fi ⊆ Ri. To
complete the proof of the theorem we observe that Ri is closed with respect
to equivalence, and therefore if ϕ ≡ ψ for some ψ ∈ Fi, then ϕ ∈ Ri.

The proof of Theorem 1 delivers more than is stated in the theorem. We
showed that the condition ϕ ≡ ψ for some ψ ∈ Fi, without the requirement
dep(ψ) ≤ dep(ϕ), is enough to guarantee that ϕ ∈ Ri. This requirement
of the depth of ψ that seems to be a technical point is used in proving the
non-technical result that a priori knowledge can be derived from a posteriori
knowledge in part (b) of Theorem 2.

to any formula in Fi with lower or equal depth as there are no 0-depth formulas in Fi.
Obviously, there are formulas, like Kip, which satisfy the other condition but they are not
trivial.
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4. A priori and a posteriori knowledge

A formula ϕ which is a posteriori discernable by i is not necessarily known
by i in given possible world. In some possible worlds i may know ϕ, in some
others i may know ¬ϕ and in yet others i may know neither. The a priori
knowledge of i may also depend on the possible world. Although Kip is a
priori discernable by i, she may know Kip in some possible worlds and know
¬Kip in others. We now characterize the sets of formulas that i can know
in a possible world and then characterize the intersection of such sets with
Ri and Si.

The set of formulas that hold true in a possible world in some model
is a maximal consistent set. Conversely, any maximal consistent set is a
possible world in the canonical model. Thus, in order to characterize sets
of formulas that are the formulas known by an individual in some possible
world we can restrict ourselves to possible worlds in the canonical model.
The set of formulas known by i in ω ∈ Ω∞ is called the ken of i in ω and is
denoted by keni(ω). That is, keni(ω) = {ϕ | Kiϕ ∈ ω}. We first characterize
sets of formulas that are kens.

Proposition 2. A set of formulas Φ is a ken of i if and only if:

(1) Φ is consistent;
(2) If ϕ ∈ Φ then Kiϕ ∈ Φ;
(3) If ϕ 6∈ Φ then ¬Kiϕ ∈ Φ.

Proof: Suppose Φ = keni(ω) for some ω ∈ Ω∞. (1) Since ω is consistent
and keni(ω) ⊂ ω, keni(ω) is consistent. (2) If ϕ ∈ keni(ω) then Kiϕ ∈ ω
and thus KiKiϕ ∈ ω, which implies Kiϕ ∈ keni(ω). (3) If ϕ 6∈ Φ then
Kiϕ 6∈ ω and therefore, ¬Kiϕ ∈ ω, which implies that Ki¬Kiϕ ∈ ω and
thus ¬Kiϕ ∈ keni(ω).

Conversely, suppose that Φ satisfies (1)-(3). As Φ is consistent it can be
extended to a maximal consistent set ω in Ω∞. We show that Φ = keni(ω).
If ϕ ∈ Φ then, by (2), Kiϕ ∈ Φ ⊆ ω and therefore, ϕ ∈ keni(ω). Thus
Φ ⊆ keni(ω). If ϕ ∈ keni(ω) then Kiϕ ∈ ω. Suppose ϕ 6∈ Φ, then by (3),
¬Kiϕ ∈ Φ ⊆ ω, which contradicts the consistency of ω. Thus, keni(ω) ⊆ Φ.

The partition of the set of formulas into a priori and a posteriori discern-
able formulas by i induces a partition of each of i’s kens, Ki into the a priori
and a posteriori known formulas: KR

i = Ki ∩ Ri, and KS
i = Ki ∩ Si

In the next proposition we characterize these two sets.

Proposition 3. For a set of formulas Φ,

(a) Φ = KR
i for some ken of i, Ki, if and only if Φ is a maximal consis-

tent subset of Ri;
(b) Φ = KS

i for some ken of i, Ki, if and only if KiΦ ∪ ¬Ki(Si \ Φ) is
consistent.

Proof: (a) Let Ki = keni(ω). As a subset of a consistent set, KR
i is consis-

tent. Since ω is a maximal consistent set, for each ϕ ∈ Ri either Kiϕ ∈ ω
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or ¬Kiϕ ∈ ω. In the first case, ϕ ∈ KR
i . In the second case, as ϕ ∈ Ri it

follows, by part (2) of Proposition 1, that Ki¬ϕ ∈ ω, and hence ¬ϕ ∈ KR
i .

Thus, KR
i is a maximal consistent subset of Ri.

Let Φ be a maximal consistent subset of Ri. By part (4) of Proposition 1,
for each ϕ ∈ Φ, Kiϕ ≡ ϕ and therefore Kiϕ must be in Φ. Thus, KiΦ ⊆ Φ.
Since Φ is consistent it follows that KiΦ is consistent. Hence there exists
ω ∈ Ω∞ such that KiΦ ⊆ ω. Let Ki = keni(ω). Then Φ ⊆ KR

i . Since Φ is a
maximal consistent subset of Ri and, as we have shown, so is KR

i , it follows
that Φ = KR

i .
(b) Let Φ = KS

i for a ken Ki of i. Then Φ ⊆ Ki and therefore KiΦ ⊆ Ki.
Since Si\Φ is disjoint from Ki it follows by Propositions 2 that ¬Ki(Si\Φ) ⊆
Ki. As Ki is consistent, it follows that KiΦ ∪ ¬Ki(Si \ Φ) is consistent.

Conversely, suppose that Φ ⊆ Si and KiΦ ∪ ¬Ki(Si \ Φ) is consistent,
then KiΦ ∪ ¬Ki(Si \ Φ) ⊆ ω for some ω ∈ Ω∞. Let Ki = keni(ω). Then
Φ ⊆ Ki ∩ Si = KS

i . Also, Si \ Φ is disjoint from Ki and therefore also from
KS

i . Hence, Φ = KS
i .

The next theorem claims that for each ken of i, Ki, each of the sets KR
i

and KS
i determines the ken. That is, the a posteriori knowledge of i in a

possible world can be derived from i’s a priori knowledge at the possible
world, and vice versa.

Theorem 2. Let Ki and K̂i be kens of i.

(a) if KR
i = K̂R

i , then KS
i = K̂S

i ;

(b) if KS
i = K̂S

i , then KR
i = K̂R

i .

Proof:
(a) Consider ϕ ∈ Si. Since Kiϕ ∈ Ri, it follows by Proposition 3 that

one and only one of Kiϕ and ¬Kiϕ is in KR
i . If Kiϕ ∈ KR

i then ϕ ∈ Ki

and thus, since ϕ ∈ Si, it follows that ϕ ∈ KS
i . As KR

i = K̂R
i , also ϕ ∈ K̂S

i .

If ¬Kiϕ ∈ KR
i then ϕ 6∈ Ki and thus ϕ 6∈ KS

i , and also ϕ 6∈ K̂S
i . Thus,

KS
i = K̂S

i .

(b) In the next proposition we show that formulas in Ri can be expressed
in terms of formulas in Si. Denote by FS

i the subset of Fi that consists of
the formulas generated by the logical connectives from the formulas of the
form Kiϕ where ϕ ∈ Si.

Proposition 4. If ϕ ∈ Ri and ϕ is not trivial then ϕ ≡ ψ for some ψ ∈ FS
i .

Proof: We first show the following simple claim.

Lemma 2. If ϕ ∈ Fi is non-trivial, then ϕ ≡ ϕ′ for ϕ′ ∈ Fi that is generated
by logical connectives from formulas of the form Kiψ where ψ is non-trivial.

Proof: The proof is by induction on the structure of formulas in Fi. Ob-
viously, if ϕ = Kiψ or ϕ = ¬Kiψ is non-trivial, then ψ is non-trivial and
ϕ′ = ϕ. Suppose ϕ = Kiψ1 ∧ Kiψ2 is non-trivial. None of ψ1 and ψ2 can
be a contradiction because then ϕ is a contradiction. It is impossible that
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both ψ1 and ψ2 are theorems because then ϕ is a theorem. Thus, either ψ1

and ψ2 are both non-trivial, and ϕ′ = ϕ, or one, say ψ1, is a theorem and
ψ2 is non-trivial, in which case ϕ′ = Kiψ2.

By Theorem 1, if ϕ ∈ Ri and ϕ is non-trivial, then ϕ ≡ ψ for some ψ ∈ Fi,
and obviously, as ϕ is not trivial ψ is not trivial. Thus, it is enough to show
that any non-trivial formula in Fi is equivalent to a formula in FS

i . We
prove it by induction on the depth of non-trivial formulas in Fi.

If dep(ϕ) = 1 then ϕ is generated by logical connectives from formulas
of the form Ki(ψ) where dep(ψ) = 0, that is, ψ is generated by logical
connectives from atomic formulas. Moreover, by Lemma 2 we can assume
that ψ is non-trivial. It is easy to construct a model with a possible world at
which ¬Kiψ∧¬Ki¬ψ holds true, that is, ψ ∈ Si, and thus ϕ ∈ FS

i . Suppose
we proved the claim for formulas of depth ≤ n and let dep(ϕ) = n+1. Then
ϕ is generated by logical connectives from formulas of the form Ki(ψ) where
dep(ψ) ≤ n. By Lemma 2 we can assume that each of the ψ’s is non-
trivial. Thus, it is enough to show that each non-trivial formula Ki(ψ) with
dep(ψ) ≤ n is equivalent to a formula in FS

i . Now, if ψ ∈ Si then Ki(ψ) is
itself in FS

i and we are done. Suppose then that ψ ∈ Ri. Then by Theorem
1, ψ is equivalent to a formula ξ ∈ Fi with dep(ξ) ≤ dep(ψ) ≤ n and
therefore Kiψ ≡ Kiξ. Since ψ is non-trivial, ξ is also non-trivial, and by
the induction hypothesis, ξ is equivalent to a formula in FS

i . Since ξ ∈ Fi,
it follows by Theorem 1 that ξ ∈ Ri and thus by part (4) of proposition 1,
Kiξ ≡ ξ. We conclude that Kiψ is equivalent to ξ which is equivalent to a
formula in FS

i . This implies that ϕ is equivalent to a formula in FS
i .

Now, let Φ = KS
i = K̂S

i , and Ψ = KiΦ ∪ ¬Ki(Si \ Φ). As shown in part

(b) of Proposition 3, Ψ is a consistent subset of KR
i and of K̂R

i . Moreover,
Ψ is a maximal consistent subset of {Kiϕ | ϕ ∈ S}. Since the formulas of
FS
i are generated from this set by logical connectives, it follows that there

exists a unique maximal consistent subset of FS
i , Ψ′, which contains Ψ.

By Proposition 4, there exists a unique maximal consistent subset of the
non-trivial formulas in Ri that contains Ψ′. By Theorem 1 any maximal
consistent subset of Ri consists of a maximal consistent subset of the non-
trivial formulas in Ri and all the theorems in Ri. Thus, there exists a
unique maximal consistent subset of Ri that contains Ψ. Since KR

i and K̂R
i

are maximal consistent subsets of Ri and each of them contains Ψ, it follows
that KR

i = K̂R
i .
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